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Abstract

Steady-state, transient and angular characteristics are calculated by ®nite di�erences for a friction probe of

circular segmented shape. Di�usion in longitudinal and transversal directions is taken into account. In order to
resolve accurately the in®nitely high current densities at the electrode edges an oblate spheroidal system of
coordinates is used. The approximate relationship for the Sherwood number Sh at Pe>1 was constructed by using
asymptotic and numerical results. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The main aim of this work is the theoretical determi-

nation of a transient probe current I(t ) after electrode

potential switch on. From this current the time con-

stant of a friction probe can be obtained [1,2]. Also, as

a result of the calculations a steady-state and angular

characteristic of the segmented probe can be found.

Very often circular electrodes are used as friction

probes. Such a type of probe is easy to fabricate by

gluing a platinum wire into a supporting material.

Theories for circular friction probes in a boundary

layer approach for steady-state and unsteady transient

characteristics are developed in Refs. [1,3]. Sobolik et

al. [3] calculated, using the boundary layer approach,

the angular characteristics of a three-segment circular

probe. A good review of various friction probes includ-

ing those of a circular shape can be found in Ref. [4].

Small probes are preferable due to their good spatial

resolution and better frequency response. But for the

small probe when the Peclet number is relatively small

(Pe<1000) the boundary layer approach fails. In this

case the terms in governing equations which describe

the longitudinal and lateral di�usion e�ects should be

taken into account. The three-dimensional problem of

mass transfer for circular probes have been evaluated

in Refs. [5±7]. Phillips [5] presented an analytical treat-
ment of mass transfer for a disc-shaped ®lm at low

Peclet numbers. He used the method of matched

asymptotic expansions. The Green function method

was used by Stone [6] for calculation of mass transfer

for circular and elliptic electrodes at 10ÿ3<Pe<103.

At ®nite Peclet numbers the investigation can only
be carried out numerically. This was ®rst done by Py

and Gosse [7]. In Ref. [7] a simple Cartesian coordi-

nate system was used. But due to the in®nitely large

current density at the electrode edges a special ellip-

soidal system of coordinates must be used for correct

calculations. Only in this coordinate system can the

edge e�ects be accurately resolved.
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2. Oblate spheroidal system of coordinate and governing

equation

The governing di�erential equation is
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is the Laplace operator.
Boundary conditions are:
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The applied potential is assumed high enough so that
the concentration at the electrode surface is zero. The
condition (4) shows that the mass ¯ux vanishes on the
insulator surface.

Boundary conditions (2)±(4) generate an in®nitely
high ¯ux density j(x) at the edge of the electrode:
(x 2+z 2)1/2=R. This divergence of j(x) can be obtained

in an analytical form for a particular case S=0. For
this case the steady-state solution of the problem (1)±
(4) is given by the well-known electric potential of a

charged disk. This solution has an inverse square root
behavior of the electric ®eld E=ÿHF at the electrode
edge [1].

Nomenclature

c concentration [mol mÿ1]
c1 bulk concentration [mol mÿ1]
C dimensionless concentration c/c1
d diameter of circular electrode
D di�usivity coe�cient of the control ions [m2 sÿ1]
E strength of the electric ®eld [V mÿ1]
f angular characteristics of circular probe
I total electrical current [A]
Ii single segment current [A]

j ¯ux density [mol mÿ2 sÿ1]
j average mass ¯ux on the probe [mol mÿ2 sÿ1]
ju dimensionless modi®ed mass ¯ux density de®ned in (11)
Pe Peclet number, Sd 2/D

Per Peclet number, SR 2/D
r radial coordinate [m]
R radius of the probe [m]

S velocity gradient on the wall [m sÿ1]
Sh Sherwood number, jd/(Dc1)
t time [s]

tD dimensionless time, t � D/R 2

t1 dimensionless time, t � S/Pe 1/3
t dimensionless time,

����
t1
p

Sh�1�=ShL

u, v special coordinates de®ned in Eq. (6)
x, y horizontal coordinates [m]
y vertical coordinate [m]

Greek symbols

y angle between ¯ow direction and the line of cut [8]
s, t, j oblate spheroidal coordinates
f electric potential [V]
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Accurate calculation of the solution near the edge of
the electrode can be e�ectively performed by introdu-
cing a new oblate spheroidal coordinate system (Fig.

1) according to formula:

x � R
��������������������������������
�1� s2��1ÿ t2�

p
cos j

z � R
��������������������������������
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p
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y � Rst:
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After introducing new variables

s � sh u, t � cos v �6�

the governing Eq. (1) takes the form

@C

@ tD
� Pe

4

sh�2u� sin �2v�
4�

cos j
J

�
sh u

ch u

@

@u
� cos v

sin v

@

@v

�

ÿ sin j
ch2 u sin 2v

@

@v

C � 1

J

(
1

ch u

@

@u
ch u

@

@u
� 1

sin v

@

@v
sin v

@

@v

� J 2

ch2 u sin 2v

@ 2

@j2

)
C:

�7�

The boundary conditions (2)±(4) become

C�0,u,v,j� � 1, C�tD,1,v,j� � 1

C�tD,0,v,j� � 0,

�
@C

@v

�
v�p=2
� 0

�8�

where J=sh2 u+cos2 v is the Jacobian of the coordi-

nate transformation (6).
The ¯ux density is now determined by the formula:
on the electrode surface
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� 1

R

���������������������
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on the insulator

@C

@y
� 0 v � p=2:

From (9) it follows, that at the edge of the circle,

where r4R, the ¯ux density has singular behavior

j�r� � const����������������
R2 ÿ r2
p : �10�

The coordinate transformation also expands the edge
region, because here 1ÿ(r/R )2=t 2, and small steps in
t cause extremely small di�erences in (Rÿr ).

3. Steady-state and transient characteristics of circular

probe

Eq. (7) with initial and boundary conditions (8) was
solved by the method of alternating directions [8]. The
calculations were done on the mesh with 200, 50, 36

Fig. 1. System of oblate spheroidal coordinates: 1Ðthe probe;

2Ðthe insulator.

Fig. 2. Steady-state mass ¯ux density for z=0: 1ÐPe=10;

2ÐPe=102; 3ÐPe=103; solid lineÐcalculated values, dashed

lineÐboundary layer approach.
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(or 100, 40, 36) numbers of steps in the u-, v-, j-direc-
tions. The sizes of the Dr/R steps near the electrode
edge were 0.00137 and 0.0007. The modi®ed mass ¯ux
density

ju �
����������������
R2 ÿ r2
p �

@C

@y

�
y�0

�11�

for various Peclet numbers is shown in Fig. 2. As the

Peclet number is decreasing the three-dimensional
character of the mass transfer becomes important in
the wider domain of the circular probe.

A steady-state mass transfer coe�cient in a dimen-
sionless form is the Sherwood number Sh=jd/(Dc1).
The complete mass transfer curve for a circular probe

is shown in Fig. 3. The solid line represents numerical
calculations done over the range of Peclet numbers
Pe=10ÿ2±104. The short dashed line 2 represents the

theoretical low Peclet number resulting from Phillips
[5]:

Sh � 2�4ÿ 0:11268Pe1=3r �
p�1ÿ 0:20281Pe1=3r �

: �12�

In this formula it has been taken into account that in

the Sherwood and Peclet numbers [5,6] the character
scale is the radius of the probe. The calculated results
are remarkably accurate up to Peclet number Per<1.

The dashed line 3 is the approximate expression pro-
posed by Stone [6] for Per>1:

Sh � 2

p
�2:157Pe1=3r � 3:55Peÿ1=6r �: �13�

The correlation (13) lies within 3% of the numerical

results [6] for Per=10 and within 7% at Per=5. The
dashed line 4 corresponds to the classic boundary layer
solution of Leveque. At large Peclet numbers

(Pe>103) obtained values of mass transfer coe�cient

Sh are in good agreement with the expression
ShL=0.866Pe 1/3 and disagrees with the formula given
by Py and Gosse [7] (Sh=0.807Pe 1/3). At small Pe<

104 the e�ects of longitudinal and lateral di�usion
result in considerable deviations from the Leveque
model. Calculated values of the Sherwood number can

be described by approximating the formula

Sh � 0:866Pe1=3 � 3:235Peÿ1=6 ÿ 1:358Peÿ1=3

� 0:0771Peÿ2=3: �14�

The correlation has an accuracy better than 1% for a

wide range of Peclet numbers (1<Pe<104).
In Fig. 4 the transient process for stepwise switching

on the electrode potential is shown. The values of the

relative Sherwood number obtained in the boundary
layer approach [1] are expressed by approximating the
formula

Sh�t1�
ShL

� �1ÿ exp �ÿ4:17t5=31 ��ÿ0:3: �15�

The numerically obtained mass transfer coe�cients

have more complex behavior and are Peclet number
dependent. The numerical results for the relative
Sherwood number can be represented as follows:

Sh� �t �
Sh�1� �

1� �b1 �t � b2 �t
2� exp �ÿa �t

2�
�1ÿ exp �ÿ4:17�t

10=3��0:3
: �16�

Here �t � ����
t1
p

Sh�1�=ShL � �����
tD
p

Pe1=3 Sh�1�=ShL,
Sh(1)Ðsteady-state value (14). The coe�cients a, b1,
b2 obtained using the least square method are de®ned
by

Fig. 3. Dimensionless steady-state mass transfer coe�cient:

1Ðcalculated values; 2ÐPhillips [5]; 3ÐStone [6]; 4Ðbound-

ary layer approach.

Fig. 4. Time evolution of the relative mass transfer coe�cient:

1ÐPe=0; 2ÐPe=1; 3ÐPe=10; 4ÐPe=102; 5ÐPe=103;

6ÐPe=104.
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Fig. 6. Angular characteristics of twin electrode: 1ÐPe=103;

2ÐPe=104; 3Ðdata [1]; 4Ðtheory of Py and Gosse [7].

Fig. 7. Comparison of calculated and experimental angular

functions: 1ÐPe=103; 2ÐPe=104; 3Ðboundary layer

approach [3]; 4Ðexperimental data [3].

a � ÿ0:0513ÿ 0:05428 ln �Pe=10� � 0:03521 ln2 �Pe=10�
b1 � 1:125ÿ 0:307 log Peÿ 0:063 log2 Pe
b2 � ÿ0:2403ÿ 0:4988 log �Pe=10� � 0:263 log2 �Pe=10� ÿ 0:0176 log3 �Pe=10�:

�17�

The proposed approximation of Sh(t ) deviates from

numerically calculated values not more than 3% for Pe
e10 and less than 2% for Pee100.

4. Angular characteristics for circular probe

For a double probe composed of two half-circular
electrodes (Fig. 5) the angular characteristics are
described by the function

f �y� � I1�y�
I1�0� ÿ 1 �18�

where I1(y ) is an electric current from an upper elec-

trode. This calculated numerical function is shown in
Fig. 6. The theoretical results of Refs. [1] and [7] are
also shown here. In Ref. [1] the angular function f(y )
was calculated in a boundary layer approach in a form

f �y� � 21=2

B�4=3,1=2�

2642 �y
0

� sin j ctgy� cos j�2=3

cos j dj� 22=3
�p=2
y

cos 5=3jdj

375ÿ 1: �19�

At large Peclet numbers (Pe>104) the calculated
values of f(y ) are in a good agreement with formula
(19), the relative deviation is less than 1±2%.

For a triple probe which consists of three identical
segments (Fig. 5) the angular characteristics can be
described by the functions

fi�y� � Ii�y�
I0

: �20�

The total current of the triple probe I0 is the sum of Ii.

The current from the ith segment Ii is obtained from
the expression

Ii � ÿFD
�R
0

r dr

�ji�1

ji

�
@c

@y

�
y�0

dj: �21�

The calculated angular characteristic fi (y ) is shown in

Fig. 7. The values fi (y ) obtained in the boundary layer
approach and experimentally measured functions from
Ref. [3] are also presented here. Some discrepancy

between calculated characteristics and experimental
data [3] can be explained by the nonideal geometric
form of the real triple-electrode probe used in the ex-
periments.

Fig. 5. Segment circular probes.

P.I. Geshev, N.S. Safarova / Int. J. Heat Mass Transfer 42 (1999) 3183±3188 3187



5. Conclusion

The boundary layer approach fails near the electrode
edges in the domain of several characteristic lengths
lD �

���������
D=S
p

. For a circular probe this peripheral ring

domain occupies a relatively high part of the electrode
area. Here the mass ¯ux density is large and is pro-
portional to an inverse square root of the distance

from the edge. As a result the steady-state mass trans-
fer at Peclet number Pe=102±104 deviates considerably
by 5±30% from Leveque's values.

The characteristic time needed for transient current
to achieve the steady-state value for Pe=102±103 is
larger than the time predicted by the boundary layer
theory.

For Pe=103 the angular characteristic of the probe
also deviates from its asymptotic value by 10±15%.
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